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Abstract 

Chagas disease, caused by Trypanosoma cruzi, remains 
underdiagnosed in low-resource settings where 
serological testing is limited. Given the widespread 
availability of electrocardiography (ECG) and the 
conduction abnormalities characteristic of Chagas 
cardiomyopathy, ECG-based artificial intelligence offers a 
scalable alternative for early detection. A deep transfer 
learning model was developed based on a pretrained 
InceptionTime architecture, and fine-tuned on Brazilian 
(CODE-15%, Sami-Trop) and European (PTB-XL) ECG 
datasets. Recordings were preprocessed with filtering, 
downsampling, normalization, and 5-second segment 
extraction, with data augmentation applied during 
training. The training loss consisted of binary cross-
entropy with a penalization term to emphasize the 
challenge metric. Inference combined predictions across 
multiple ECG segments and models. The approach 
achieved a cross-validation score of 0.42, a score of 0.382 
on the validation set, and an average test score of 0.256 
ranking 6th/40. These findings demonstrate the feasibility 
of deep transfer learning for ECG-based Chagas screening 
and its potential to expand diagnostic access in 
underserved regions. 

 
 

1. Introduction 

Chagas disease, caused by Trypanosoma cruzi, affects 
6–8 million people in Latin America and causes an 
estimated 10,000 deaths annually [1]. Despite its 
significant burden, diagnosis relies on multiple serological 
assays, which are costly and less accessible in low-
resource regions[1], [2]. Machine learning approaches 
have been applied to serological data for detecting the 
parasite in blood samples. However, these methods do not 
address the accessibility challenges in underserved areas 
[3], [4].  

Chagas cardiomyopathy, developed in the chronic 
phase of the disease, is often marked by characteristic 
conduction disturbances—such as right bundle branch 
block, left anterior hemiblock, first-degree atrioventricular 
block, atrial fibrillation, and ventricular ectopy. These 
conduction disturbances not only define its clinical profile 
but have also been integrated into established prognostic 

scores [5], [6], [7], [8], [9]. Therefore, the 
electrocardiogram (ECG) offers a low-cost, widely 
available alternative to the serological testing. Yet, the 
direct use of ECG for Chagas disease screening remains 
underexplored, representing a critical opportunity to 
improve early detection and expand diagnostic reach [10]. 

The 2025 PhysioNet Challenge seeks to address this 
research gap by leveraging two Brazilian datasets—
CODE-15% and Sami-Trop—and one European dataset, 
PTB-XL [11], [12], [13], [14], [15], [16], [17]. Our work 
aims to use a large pre-trained ECG model and fine tune it 
to better detect the Chagas disease. 

 
2. Method 
 

Our methodology was inspired by the preprocessing 
framework of the PhysioNet 2021 Challenge winner and 
by the binary outcome prediction model of Buscher et al., 
which relies on the InceptionTime backbone architecture 
[18], [19], [20]. 

The architecture comprises two residual blocks, each 
containing three inception modules. The first inception 
module processes the raw ECG signal by applying a 
convolution across all channels to generate a bottleneck 
layer with 32 filters. This representation is subsequently 
passed through three parallel convolutional layers, each 
with 32 filters but distinct kernel sizes. The outputs of these 
convolutions are concatenated with the result of a max-
pooling operation applied directly to the raw ECG (Figure 
1). Each subsequent inception module receives as input the 
output of the preceding module.  

At the final stage, an adaptive average pooling layer 
reduces the temporal dimension to a single value, 
producing a feature vector of size 128 (32 × 4). A fully 
connected layer (128, 1) then transformed this into the 
ECG feature vector. To leverage demographic 
information, patient age and sex, encoded as numerical 
values, were concatenated with the ECG feature vector 
before classification. The combined vector was passed 
through two fully connected layers of sizes (3, 3) and (3, 
1), respectively, yielding the final prediction. The 
InceptionTime backbone was initialized with pretrained 
weights from Buscher et al., derived from a large 
emergency department ECG cohort [18]. 

All ECG recordings were preprocessed prior to model 
input. A zero-phase third-order Butterworth band-pass 
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filter (1–47 Hz) was applied, followed by downsampling 
to 200 Hz and z-score normalization. From each recording, 
a random 5-second segment was extracted. To improve 
model robustness, data augmentation was applied during 
training: random lead masking (10% of leads set to zero), 
two temporal masks covering approximately 6% of the 
signal window, and additive Gaussian noise sampled from 
𝒩(0, 0.02).  

The optimization objective was a penalized binary 
cross-entropy (pBCE) loss, designed to align with the 
challenge metric requirements. For a training batch with 
labels y ∈ {0,1} and predictions p ∈ [0,1], the loss is 
defined as: 

L!"#$   =  α L"#$   +  (1 − α) L%& (1) 
Here, α is a hyperparameter set to 0.66 to balance the 

loss terms. The first term is the standard binary cross-
entropy, and the second term penalizes false negatives 
above the 95th percentile of predicted probability: 
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Where 𝔅 is the set of all indices in the batch, 𝑦) the 
outcome,	 𝑦) 	 the	 predicted	 outcomes, 𝜏-./0	the 95th 
percentile of predicted outcomes in the batch. 

A 5-fold cross-validation (CV) strategy was used, 
training five models independently with different data 
splits. Model training was conducted using the fastai 
framework (built on the PyTorch library) with the Adam 
optimizer. Training proceeded in two phases. In the first 
phase, all layers except the final linear classifier were 
frozen, and the model was pretrained for 5 epochs using 
the One-Cycle learning rate policy, with the learning rate 
varying from 1×10−2 to 1×10−4. In the second phase, all 
layers, including the Inception modules, were unfrozen and 

trained for 25 epochs with the One-Cycle policy, with 
learning rates varying from 5×10−3 to 5×10−6. A learning 
rate scheduler (ReduceLROnPlateau, patience = 2, 
reduction factor = 0.1) was applied, and early stopping was 
employed based on validation loss with a patience of 10 
epochs. 

For inference, the three models with the highest 
validation performance were selected. As the input length 
was restricted to 5 seconds, five random 5-second 
segments were extracted from each ECG recording. Each 
model generated probability estimates for all segments, 
which were averaged to obtain a segment-level prediction 
per model. The final output was the mean of the three 
model-level predictions. 

Computations were performed using a NVIDIA 
GeForce RTX 3090 (24 GB), computational resources 
were allocated to hyperparameter optimization using the 
Optuna framework, followed by iterative refinement in 
subsequent training runs.  

 
3. Results 

Table 1: Losses, scores and rank across each dataset 

Cross-validation training scores were not directly 

Dataset Custom 
Loss Score Official 

CV training 1.10±0.06   
CV validation 1.14±0.03 0.42±0.01  

REDS-II 
validation  0.382 6/40 

REDS-II (test)  0.289 17/40 
SaMi-Trop 3 

(test)  0.355 3/40 

ELSA-Brasil 
(test)  0.125 7/40 

Figure 1: Inception module for time series classification (from the original paper). Bottleneck is visually 
described with a single dimension versus 32 in implementation. 
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computed, as this would have substantially increased 
training time. Instead, for each fold, the training loss and 
validation score corresponding to the epoch with the best 
validation loss were extracted. Table 1 reports the mean ± 
standard deviation of these values across the 5 folds. 
Alongside the challenge scores across each of the 
competition’s datasets and the corresponding scores. 
Achieving a mean score of 0.256 across the 3 test datasets, 
we ranked 6th out of 40 official entries and 7th out of 65 
total submissions 

 
4. Discussion 

The primary finding is a significant decrease in the 
challenge score from 0.382 on the REDS-II validation 
dataset to 0.289 on the REDS-II test dataset, indicating 
reduced model performance on unseen data from a 
comparable clinical setting. This variance in performance 
may be attributed to two key factors: first, the lack of more 
diverse data augmentation techniques to enhance model’s 
ability to generalize across varied scenarios; second, the 
reliance on probabilities from individual ECG segments, 
rather than analyzing the entire ECG, likely contributed 
significantly to the performance decline by missing 
broader contextual patterns. Due to time constraints in the 
competition, the variance of the model performance due to 
intra-ECG segment predictions was not explored.  

Future work could investigate the variability of deep 
learning models when applied to ECG segments or, 
similarly, examine prediction consistency across 
consecutive ECGs (intra-setting ECGs) to address these 
limitations and improve model robustness. 

Several alternative methodologies were explored during 
the official phase, including the fine tuning of newly 
derived foundations models: ECGFounder and ECGFM 
[21], [22]. Training the classification head or the full 
ECGFounder model on ECG signals upsampled to 500 Hz 
resulted in unstable training dynamics. Also, we evaluated 
an approach in which the 27 cardiac outcome predictions 
produced by ECGFounder were used as input features for 
an XGBoost classifier. However, when assessed using 5-
nested-fold cross-validation, this strategy achieved lower 
performance than our deep learning model. A student–
teacher framework based on the ECGFM model, which 
incorporated 150 predictions into a distillation loss, was 
also investigated; however, this approach suffered from 
either unstable training dynamics or severe overfitting.  

These limitations highlight the challenges of adapting 
large, pretrained ECG models within the competition’s 
time constraints. Future work could examine 
generalization performance of ECGFounder and ECGFM 
under specific training strategies and explore advanced 
regularization schemes for distillation.  

 
5. Conclusion 

We developed and evaluated a deep learning model for 
Chagas disease detection from digital ECG signals, 
addressing the need for accessible diagnostic tools in low-
resource regions. Leveraging a pretrained InceptionTime 
backbone and fine-tuning it on Brazilian and European 
datasets, we achieved competitive (6th/40) performance in 
the 2025 PhysioNet Challenge.  
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