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Abstract

Chagas disease, caused by Trypanosoma cruzi, remains
underdiagnosed in  low-resource  settings  where
serological testing is limited. Given the widespread
availability of electrocardiography (ECG) and the
conduction abnormalities characteristic of Chagas
cardiomyopathy, ECG-based artificial intelligence offers a
scalable alternative for early detection. A deep transfer
learning model was developed based on a pretrained
InceptionTime architecture, and fine-tuned on Brazilian
(CODE-15%, Sami-Trop) and European (PTB-XL) ECG
datasets. Recordings were preprocessed with filtering,
downsampling, normalization, and 5-second segment
extraction, with data augmentation applied during
training. The training loss consisted of binary cross-
entropy with a penalization term to emphasize the
challenge metric. Inference combined predictions across
multiple ECG segments and models. The approach
achieved a cross-validation score of 0.42, a score of 0.382
on the validation set, and an average test score of 0.256
ranking 6"/40. These findings demonstrate the feasibility
of deep transfer learning for ECG-based Chagas screening
and its potential to expand diagnostic access in
underserved regions.

1. Introduction

Chagas disease, caused by Trypanosoma cruzi, affects
6-8 million people in Latin America and causes an
estimated 10,000 deaths annually [1]. Despite its
significant burden, diagnosis relies on multiple serological
assays, which are costly and less accessible in low-
resource regions[1], [2]. Machine learning approaches
have been applied to serological data for detecting the
parasite in blood samples. However, these methods do not
address the accessibility challenges in underserved areas
(31, [4].

Chagas cardiomyopathy, developed in the chronic
phase of the disease, is often marked by characteristic
conduction disturbances—such as right bundle branch
block, left anterior hemiblock, first-degree atrioventricular
block, atrial fibrillation, and ventricular ectopy. These
conduction disturbances not only define its clinical profile
but have also been integrated into established prognostic
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scores [5], [6], [7], [8], [9]. Therefore, the
electrocardiogram (ECG) offers a low-cost, widely
available alternative to the serological testing. Yet, the
direct use of ECG for Chagas disease screening remains
underexplored, representing a critical opportunity to
improve early detection and expand diagnostic reach [10].

The 2025 PhysioNet Challenge seeks to address this
research gap by leveraging two Brazilian datasets—
CODE-15% and Sami-Trop—and one European dataset,
PTB-XL [11], [12], [13], [14], [15], [16], [17]. Our work
aims to use a large pre-trained ECG model and fine tune it
to better detect the Chagas disease.

2. Method

Our methodology was inspired by the preprocessing
framework of the PhysioNet 2021 Challenge winner and
by the binary outcome prediction model of Buscher et al.,
which relies on the InceptionTime backbone architecture
[18], [19], [20].

The architecture comprises two residual blocks, each
containing three inception modules. The first inception
module processes the raw ECG signal by applying a
convolution across all channels to generate a bottleneck
layer with 32 filters. This representation is subsequently
passed through three parallel convolutional layers, each
with 32 filters but distinct kernel sizes. The outputs of these
convolutions are concatenated with the result of a max-
pooling operation applied directly to the raw ECG (Figure
1). Each subsequent inception module receives as input the
output of the preceding module.

At the final stage, an adaptive average pooling layer
reduces the temporal dimension to a single value,
producing a feature vector of size 128 (32 x 4). A fully
connected layer (128, 1) then transformed this into the
ECG feature vector. To leverage demographic
information, patient age and sex, encoded as numerical
values, were concatenated with the ECG feature vector
before classification. The combined vector was passed
through two fully connected layers of sizes (3, 3) and (3,
1), respectively, yielding the final prediction. The
InceptionTime backbone was initialized with pretrained
weights from Buscher et al., derived from a large
emergency department ECG cohort [18].

All ECG recordings were preprocessed prior to model
input. A zero-phase third-order Butterworth band-pass
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Figure 1: Inception module for time series classification (from the original paper). Bottleneck is visually
described with a single dimension versus 32 in implementation.

filter (1-47 Hz) was applied, followed by downsampling
to 200 Hz and z-score normalization. From each recording,
a random 5-second segment was extracted. To improve
model robustness, data augmentation was applied during
training: random lead masking (10% of leads set to zero),
two temporal masks covering approximately 6% of the
signal window, and additive Gaussian noise sampled from
N(0, 0.02).

The optimization objective was a penalized binary
cross-entropy (pBCE) loss, designed to align with the
challenge metric requirements. For a training batch with
labels y € {0,1} and predictions p € [0,1], the loss is
defined as:

Lppce = alpcg + (1 —a) Lpy (1)

Here, a is a hyperparameter set to 0.66 to balance the
loss terms. The first term is the standard binary cross-
entropy, and the second term penalizes false negatives
above the 95th percentile of predicted probability:

Lgy = ]lFNi (2)
ieB
With:
1o = {1 ify; = land 9; < 795 3)
FNi 0 otherwise

Where B is the set of all indices in the batch, y; the
outcome, P; the predicted outcomes, 7445the 95th
percentile of predicted outcomes in the batch.

A 5-fold cross-validation (CV) strategy was used,
training five models independently with different data
splits. Model training was conducted using the fastai
framework (built on the PyTorch library) with the Adam
optimizer. Training proceeded in two phases. In the first
phase, all layers except the final linear classifier were
frozen, and the model was pretrained for 5 epochs using
the One-Cycle learning rate policy, with the learning rate
varying from 1x1072 to 1x107*. In the second phase, all
layers, including the Inception modules, were unfrozen and

trained for 25 epochs with the One-Cycle policy, with
learning rates varying from 5x107% to 5x10°°. A learning
rate scheduler (ReduceLROnPlateau, patience = 2,
reduction factor = 0.1) was applied, and early stopping was
employed based on validation loss with a patience of 10
epochs.

For inference, the three models with the highest
validation performance were selected. As the input length
was restricted to 5 seconds, five random 5-second
segments were extracted from each ECG recording. Each
model generated probability estimates for all segments,
which were averaged to obtain a segment-level prediction
per model. The final output was the mean of the three
model-level predictions.

Computations were performed using a NVIDIA
GeForce RTX 3090 (24 GB), computational resources
were allocated to hyperparameter optimization using the
Optuna framework, followed by iterative refinement in
subsequent training runs.

3. Results

Table 1: Losses, scores and rank across each dataset

Dataset Custom Score Official
Loss
CV training | 1.10+0.06
CV validation | 1.14+0.03 | 0.42+0.01
REDS-II 0382 | 6/40
validation
REDS-II (test) 0.289 17/40
SaMi-Trop 3
(test) 0.355 3/40
ELSA-Brasil
(test) 0.125 7/40

Cross-validation training scores were not directly
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computed, as this would have substantially increased
training time. Instead, for each fold, the training loss and
validation score corresponding to the epoch with the best
validation loss were extracted. Table 1 reports the mean +
standard deviation of these values across the 5 folds.
Alongside the challenge scores across each of the
competition’s datasets and the corresponding scores.
Achieving a mean score of 0.256 across the 3 test datasets,
we ranked 6th out of 40 official entries and 7th out of 65
total submissions

4. Discussion

The primary finding is a significant decrease in the
challenge score from 0.382 on the REDS-II validation
dataset to 0.289 on the REDS-II test dataset, indicating
reduced model performance on unseen data from a
comparable clinical setting. This variance in performance
may be attributed to two key factors: first, the lack of more
diverse data augmentation techniques to enhance model’s
ability to generalize across varied scenarios; second, the
reliance on probabilities from individual ECG segments,
rather than analyzing the entire ECG, likely contributed
significantly to the performance decline by missing
broader contextual patterns. Due to time constraints in the
competition, the variance of the model performance due to
intra-ECG segment predictions was not explored.

Future work could investigate the variability of deep
learning models when applied to ECG segments or,
similarly, examine prediction consistency across
consecutive ECGs (intra-setting ECGs) to address these
limitations and improve model robustness.

Several alternative methodologies were explored during
the official phase, including the fine tuning of newly
derived foundations models: ECGFounder and ECGFM
[21], [22]. Training the classification head or the full
ECGFounder model on ECG signals upsampled to 500 Hz
resulted in unstable training dynamics. Also, we evaluated
an approach in which the 27 cardiac outcome predictions
produced by ECGFounder were used as input features for
an XGBoost classifier. However, when assessed using 5-
nested-fold cross-validation, this strategy achieved lower
performance than our deep learning model. A student—
teacher framework based on the ECGFM model, which
incorporated 150 predictions into a distillation loss, was
also investigated; however, this approach suffered from
either unstable training dynamics or severe overfitting.

These limitations highlight the challenges of adapting
large, pretrained ECG models within the competition’s
time constraints. Future work could examine
generalization performance of ECGFounder and ECGFM
under specific training strategies and explore advanced
regularization schemes for distillation.

5. Conclusion

We developed and evaluated a deep learning model for
Chagas disease detection from digital ECG signals,
addressing the need for accessible diagnostic tools in low-
resource regions. Leveraging a pretrained InceptionTime
backbone and fine-tuning it on Brazilian and European
datasets, we achieved competitive (6"/40) performance in
the 2025 PhysioNet Challenge.
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